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ABSTRACT. A finite element model was modified to use a constitutive relationship of soil compaction that included the
effects of both normal and shearing stresses. Predicted values of soil stress were compared against results from a
laboratory experiment. All predicted values at final deformed depths less than 0.3 m were within the 95% confidence
intervals of the measured values. but at deeper depths most of the predictions fell outside the 95% confidence intervals of
the measured values. Keywords. Finite element analysis. Model, Soil compaction.

S oil compaction models are useful tools for
estimating the magnitude of soil compaction.
Typically, the input for these models is the
magnitude of stress at a point in the soil profile, and

output is the amount of volumetric strain for a prediction of
soil density. The input requirements present a problem
because values of stress in the soil are not normally known.
Usually, the only inputs fanners know are the weight of
their vehicle, tire size and inflation pressure or track size,
and their particular soil condition. Farmers want to know
(a) the maximum amount of soil compaction that will take
place in the soil, (b) the extent of damage to the soil
(i.e., how deeply it will be compacted excessively), (c) how
much sinkage the load causes, and (d) how their crop yield
will be affected. One must conclude that current soil
compaction models are inadequate.

Finding a method to take the given inputs and produce
some or all of the wanted outputs has been a subject of
research for half a century. Finite element analysis comes
closest as the most logical candidate. This method can be
used to predict all the unknowns except item d. No other
method that has been proposed can predict stress
propagation, magnitude of soil compaction, and surface
deformation. If an accurate constitutive relationship is
known for the soil condition, the only obstacle is adequate
computational facilities. With the proliferation of powerful
microcomputers, this is becoming irrelevant.

Researchers have investigated using the finite element
method for soil compaction prediction since 1969
(Perumpral, 1969). As computers have become more
powerful, the finite element models have also become
more powerful and complicated. Unfortunately, the
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accuracy of the predictions is only as good as the
constitutive relationships provided to the finite element
model. Earlier attempts at using a finite element model to
solve the soil compaction problem were probably
hampered by deficiencies in constitutive stress-strain
relationships for soil. Until recently, soil compaction
models did not adequately relate shearing stress and strain.
However, with the development of stress-strain-compaction
relationships for soil at the National Soil Dynamics
Laboratory (NSDL) and Auburn University, improvements
in predicting soil compaction with the finite element
method are possible.

The objectives of this research effort are to:
• Develop appropriate techniques for predicting

tangential linear-elastic parameters from the
constitutive relationship.

• Incorporate a soil compaction model that uses both
normal and shearing stresses into a finite element
model.

• Compare and evaluate the predicted stress levels
against laboratory tests.

LITERATURE R EVIEW
The earliest soil compaction models considered the

major principal compressive stress to be the most relevant
predictor of soil compaction (Chancellor et al., 1958).
Researchers assumed that for tire induced soil compaction,
the stress that caused the most damage was the vertical
stress. This theory was practical and was easily modeled in
a shallow cylinder by performing a confined compression
test (Larson et al., 1980). Because of the shallow soil
depth, there was only slight stress variation from top to
bottom, and the major principal stress was the controlling
factor. This theory was reasonable for shallow cylinders,
but is not adequate for deep field soils that have
significantly larger shearing stresses.

As researchers learned more about the compaction
process, other methods of predicting soil compaction were
sought. Mean normal stress (one third of the first invariant
of the stress tensor) was investigated by Vanden Berg et al.
(1958). They observed that the mean normal stress was a
better predictor of soil compaction than the major principal

Transactions of the ASAE

VOL. 37(5):1417-1422 1994 American Society of Agricultural Engineers 1417



compressive stress which did not adequately consider the
confining stress.

A continuation of this approach was used by
Bailey et al. (1984). They established a relationship based
on hydrostatically loaded soil samples in a triaxial
apparatus. For the case of hydrostatic loading, the mea”
normal stress equaled the hydrostatic pressure applied.
Volumetric strain was predicted as a function of the applied
stress.

This model tit the laboratory data well, but for field use it
was limited by the assumption of hydrostatic stress
loading.

Raper and Erbach (1990b) used equation 1 as a
constitutive relationship in a nonlinear finite element
model to determine if soil stresses could be accurately
predicted. They modeled a flat circular plate and a
spherical plate which applied a 12.5-kN and a 25-kN load
to the soil surface. Results from the finite element model
and from transducers placed in the soil showed that the
prediction accuracy was affected by the load-applying
devices. Stress values beneath the flat plate were predicted
very accurately while those beneath the spherical disk were
not. One of the reasons given for the inadequate predictions
in the spherical disk loading case was that shear stress was
not taken into consideration.

Other research indicated that the maximum amount of
soil compaction did not occur near the surface where the
load was applied (Chancellor et al., 1962). If the soil
behaved like a solid continuum, the largest compaction
should be next to the load application at the surface and
should decrease as the distance into the soil increases. Soil
behaves like a continuum only up to a point, however, and
then behaves like a particulate medium as the shearing
stresses become greater than the failure limits. When
failure occurs, the soil moves and increased amounts of
compaction are found some distance from the soil surface.

A” adequate soil mechanics description of the soil
compaction process should include not only the normal
stress effects but also shearing stress effects. Failure to
include both sets of effects could limit the general
effectiveness of the compaction model and make it
unusable for field research. However, neither shearing
stress nor its effects are easily measured in soil. The best
method developed so far has been to use normal pressures
measured in a particular orientation to calculate the shear
stresses. A transducer that provides data from which the
shearing stress can be calculated was developed at the
NSDL and Auburn University by Nichols et al. (1987).
This stress state transducer (SST) measured the normal
stress in six directions, three of which arc orthogonal. All
six measurements were used to establish the stress tensor
from which the principal stresses were derived. From these
stresses, the octahedral normal and shearing stresses were
calculated.

The recognition of the importance of shearing stress led
to the development of a new soil compaction model
(Bailey and Johnson, 1989). This model predicts the
volumetric strain as a function of the octahedral normal
and shearing stresses.

This model is similar to equation 1 except for the addition
of the shearing stress component and the use of the natural
strain definition. Limitations were placed on the shearing
stress component in the above model to indicate plastic
flow. The restricting relationship is:

where τ octy is the ultimate shearing stress at maximum
density and K is the coefficient representing soil plastic
flow yield. The value of K for a Norfolk sandy loam soil
used in this experiment was 0.73. If this restriction is not
made, excessive values of volumetric strain are predicted at
stress levels above plastic flow.

MODEL DEVELOPMENT
Two linear-elastic parameters are necessary for

structural finite element models: Poisson’s ratio and
Young’s modulus. Both parameters were initially defined
for isotropic, homogeneous, linear-elastic materials. To use
the linear-elastic parameters for a particulate material such
as soil, certain of these assumptions must be neglected.
Usually, the disregarded assumptions cause no problem and
reasonable predictions result. However, it is important to
note that the technology of finite element analysis was not
developed for particulate material and problems CM occur
because of the particulate nature of soil.

Poisson’s ratio was originally defined as (Popov, 1976):

(4)

Values assumed for Poisson’s ratio are between 0.1 (some
concretes) and 0.5 (rubber). This relationship is assumed to
hold for both tensile and compressive stresses. However,
when using this relationship, we must remember that it was
defined for a situation in which the normal stresses
perpendicular to the axial direction was zero.

Applying the concept of Poisson’s ratio to soil is valid,
but certain assumptions must be made to obtain reasonable
values from laboratory tests. The tensile stress that soil can
withstand is very small and, therefore, tests to determine
Poisson’s ratio in soil arc usually compressive. Also, unless
the soil is compacted or cemented, a small normal



compressive stress in the lateral direction must be
maintained to keep the soil from failing prematurely.

Soft soils should have a value of Poisson’s ratio near 0,
while more structured, dense, clay soils may have values
near 0.5. Low values of Poisson’s ratio indicate that a force
is not transferred very far laterally into soil and is absorbed
near the point of application. High values of Poisson’s ratio
would mean that forces would be effectively transferred
laterally and would influence more of the soil volume.

As a soil goes through the compacting process,
Poisson’s ratio will change. Initially, a soil may be very
loose and have a low value of Poisson’s ratio. As it is
compacted, thereby increasing its Poisson’s ratio, it will
translate more force radially. Thus, Poisson’s ratio should
be considered variable throughout the soil compaction
process. Assuming a high constant value initially would
underpredict the soil compaction and its distribution.

A nonlinear relationship of Poisson’s ratio is therefore
needed to enable this parameter to vary with varying stress
levels. A relationship that enabled Poisson’s ratio to be
incrementally calculated was developed by Duncan and
Chang (1970).

where ∆ε, is the incremental axial strain and ∆ε y is the
incremental volumetric strain. This equation can be derived
from the original definition (eq. 4) if axisymmetric
geometry is assumed. I” their research, Duncan and Chang
(1970) noted that this linear-elastic parameter was variable,
but declared that portion of research to be beyond the scope
of their article.

The Duncan and Chang (1970) relationship presented
another problem because of its use of incremental axial and
volumetric strain. The generally accepted method of
calculating the linear-elastic parameters in a nonlinear
manner is to take the finite element-calculated stresses and
compute, from the constitutive relationship, a new value of
Poisson’s ratio and Young’s modulus. But to use equation 5
to calculate Poisson’s ratio, two values of axial and
volumetric strain are needed. The method used to
determine these two values was to compute one set of
values at the finite element-calculated stress values and
then to calculate another using stress values slightly lower
than calculated. This second set of stresses came from
decreasing the major principal stress by a minimal amount
(we assumed 1/100th). A new set of axial and volumetric
strains was then used to compute a value of Poisson’s ratio.

Determining a value of axial strain from equation 2 also
required the use of research conducted by Grisso et al.
(1987) that suggested the following relationship.

where Yoct is the natural octahedral shearing strain and ε oct
is the natural octahedral normal strain. They investigated
different loading paths below the plastic flow limit on
several soils present in the soil bins at the NSDL and
established proportionality constants for each.

Determining Poisson’s ratio for this research effort
involved using equations 3, 5, and 6. First, the normal
stresses σ r, σθ, σ z, and the shearing stress τ rz for each
element produced by the axisymmetric finite element
model were used to calculate the principal stresses and the
octahedral normal and shearing stresses. Next, the
octahedral stress ratio was examined to decide if plastic
flow had occurred (eq. 3). A problem with instability of the
finite element model forced us to increase the values of the
minor stress components up to a point that restricted plastic
flow. The magnitude of the minor principal stress was
derived from the axisymmetric relationships (σ2 = σ3) for
octahedral normal and shearing stress and equation 3.

where
σ1 = major principal stress
σ3 = minor principal stress
K -coefficient representing soil plastic flow yield from

equation 3
The portion of equation 7 contained in parentheses was
calculated to be 0.24 for Norfolk sandy loam soil. This
instability problem and modification procedure was due to
uncompacted agricultural soils having little inherent
strength. At low stress levels, a small amount of lateral
stress was necessary to prevent uncompacted agricultural
soil from collapsing. Knowing values of octahedral
sheering stress, octahedral normal stress, and octahedral
normal strain (volumetric strain), the octahedral shearing
strain was calculated (eq. 6). Assuming axisymmetric
geometry, the directional strains were then determined
from their basic engineering relationships. These
directional strains are then used to determine Poisson’s
ratio (eq. 5).

Figure 1 shows the effect of the presence of shearing
stress on Poisson’s ratio. When no shearing stress was
present (hydrostatic loading), Poisson’s ratio changed
dramatically as the load increased across the mean normal
stress range of 50 to 500 kPa. When the major principal
stress was the only load applied and a maximum amount of
shearing stress existed, the curve flattened dramatically.
The interpretation of these curves is thus; in extremely
loose soils where stresses are small (stress < 100 kPa), the
presence of shearing stress tends to decrease Poisson’s
ratio, while in more compacted soils where the stresses are
larger, the presence of shearing stress tends to increase
Poisson’s ratio.

The other linear-elastic parameter, Young’s modulus, is
somewhat easier to measure and predict. Young’s modulus
is a measure of the stiffness of the material and is defined
as:

where
E = Young’s modulus (kPa)
σ = stress (kPa)
ε = strain
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Establishing a stress-strain curve for a “linear” material
yields this linear-elastic parameter. Typical values for
Young’s modulus range from 2 x 106 kPa for molded nylon
to 200 x 106 kPa for structural steel (Beer and Johnston,
1981).

For a material with a nonlinear relationship between
stress and strain, a tangential Young’s modulus was used
that gave an instantaneous slope of the stress-strain curve.
The method of predicting Young’s modulus that made use
of the shearing stress component involved using the
volumetric strain predicted by the finite element model and
solving equation 1 for an equivalent hydrostatic stress.
Because the equivalent hydrostatic stress indicated equal
pressures on all sides, the following relationship was used
that related Young’s modulus to Poisson’s ratio and
volumetric strain:

Young’s modulus can be determined by using the finite
element-computed volumetric strain and the previously
predicted Poisson’s ratio. Figure 2 shows how this
parameter responds to changes in principal stress and
shearing stress. As with Poisson’s ratio, this linear-elastic
parameter also displays a great amount of sensitivity to
changes in shearing stress.

The previously discussed methods of predicting
Poisson’s ratio and Young’s modulus were used in an
axisymmehic finite element model to predict the soil
stresses and soil compaction beneath a 25-cm radius,
circular steel plate (Raper and Erbach, 1990b). An
experiment was carried out in the soil bins at the NSDL
that used this plate to apply a 25-kN load to the soil
surface. Three replications of the experiment were
performed and measurements of soil condition and surface
deformation were recorded. The SSTs developed at the
NSDL were also used to measure the stresses in the soil at
two depths (15 and 25 cm) and at two radial locations
(at the center and at 20 cm radially) beneath the flat plate.

The average of the surface deformations (19.6 + 0.7 cm)
recorded from the laboratory experiment were used to
incrementally load the finite element model. Stress values
from comparable depths in the finite element model were
compared with results from the laboratory experiment.
Stresses compared were vertical, octahedral normal
(mean normal), major principal, and octahedral shearing.

RESULTS AND DISCUSSION
Generally, the stress levels predicted by the finite

element soil compaction model exceeded the 95%
confidence intervals of the SST-measured-values in seven
of 16 cases. At the shallow SST depths, all predictions
were within the confidence intervals, but near the hardpan,
the predictions were not as accurate.

For the predicted vertical stress contours (fig. 3), both of
the shallow points were within a 95% confidence interval
(table 1). The deep center point was not predicted
accurately because of the extremely tight confidence
interval. The deep radial value was narrowly missed by the
model. Measured values of the shallow radial SST were
227 + 145 kPa with a predicted value of 239 kPa while the

VERTICAL STRESS, kPa
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deep radial SST registered 163 + 97 kPa with a predicted
value of 307 kPa.

The measured octahedral normal stresses had about the
same variation as the vertical normal stresses (table 1).
Stresses at all four locations were close to the predicted
values (fig. 4). Again, though, the predicted values tended
to be greater than the measured values for the deep
positions of the SSTs.

Because the vertical stress was generally much larger
than the radial or tangential component of stress, its
magnitude was generally very close to the major principal
stress value (fig. 5). The finite element model’s prediction
of the major principal stress was very similar to its
prediction of vertical stress.

The octahedral shearing stress was predicted closer than
the other values because of it ability to be predicted
accurately at the deep center depth (fig. 6). The only
position that was not predicted accurately was the deep
radial position that had measured values of 82 + 18 kPa
with a predicted value of 148 kPa.

The incorporation of the shearing stress component into
the compaction model had a significant beneficial effect on
the results emanating from the finite element model.
Previous research by Raper and Erbach (199Ob) which
modeled a flat circular plate and used equation 1 as the
constitutive relationship (and used octahedral normal stress

Figure 4-Iso-stress graph of octahedral normal stress in the soil
profile after a flat plate has applied a load to the soil surface. The
circles indicate locations of the SSTs in the soil.

Figure 5-Iso-stress graph of major principal Stress in the soil profile
after a flat plate has applied a load to the soil surface. The circles
indicate locations of the SSTs in the soil.

in place of hydrostatic stress) predicted vertical stress and
octahedral normal stress contours approximately 40% less
than the current model at the deep SST location. The
magnitudes of these values from previous research fell
mostly within the 95% confidence interval, while the
current model generally exceeds this interval for these
parameter.

The inclusion of the octahedral shearing stress
component into the compaction model caused the finite
element model to predict significantly higher stress values
at the deep SST location. The reason for the decreased
prediction efficiency is not clear. It either comes directly
from including the shearing stress component into the soil
compaction model or indirectly from the methods that are
required due to the presence of shearing stress. Research
shows that Poisson’s ratio fixes the stress state in a finite
element model (Raper and Erbach, 199Oa). Poisson’s ratio
is dependent on the relationship of shearing strain to stress
state. The relationship used in this research as proposed by
Grisso et al. (1987) was extrapolated beyond the range of
Grisso’s data to the point of plastic flow. Additional
research is needed to determine this parameter more
accurately.

CONCLUSIONS. Proposed modifications to the engineering
mechanics definitions of Poisson’s ratio and

Figure 6-Iso-stress graph of octahedral shearing stress in the soil
profile after a flat plate has applied a load to the soil surface. The
circles indicate locations of the SSTS in the soil.
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Young’s modulus resulted in predictions of
reasonable values for agricultural soil.
The soil compaction model developed by Bailey
and Johnson (1989) that used both octahedral
normal and shearing stresses coupled with a linear
shearing strain relationship from Grisso et al.
(1987) were successfully incorporated into an
axisymmetric finite element model.
Vertical stress, major principal stress, and
octahedral normal and shearing stress as predicted
from the finite element model were within the 95%
confidence interval of the shallow SST values
measured in the laboratory experiment. However,
the finite element model predicted excessive values
at the deeper SST location.
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